If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-2.4x+1.08=0
a = 1; b = -2.4; c = +1.08;
Δ = b2-4ac
Δ = -2.42-4·1·1.08
Δ = 1.44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2.4)-\sqrt{1.44}}{2*1}=\frac{2.4-\sqrt{1.44}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2.4)+\sqrt{1.44}}{2*1}=\frac{2.4+\sqrt{1.44}}{2} $
| -2x²+4x-6=0 | | (x^2+4)(3x-9)=0 | | 3x+6+5x-6=180 | | C=((2x91)/(119+111))x100 | | (2x)/(x+1)=1 | | X=95+-4x | | 2(x+5)-4=x+11 | | 4/y-3=5/2y-3 | | 3×+10=4+x | | -7(x-3=-4) | | -7(x-3=-4 | | c^2-17c+72=0 | | 125x+125=125 | | q+3=6 | | 0.66y-y=4+0.50y | | 3m/2=4 | | (x-7)^2=1125 | | 2x=-24/5 | | 3n+18+4n+29=180 | | 8x+451-7=-43 | | 5=3p+20 | | x²-4x+9=0 | | 3x2+3x-5=0 | | 10n=6/(n-1) | | 2x²+4=43 | | 0,786=x+0.1(x-0.2) | | 4n+18+2n+30=180 | | 3(x-3)-5(x+2)=-10 | | 5(x+12)=-3(2x-15) | | 2x+41=9x+27 | | 0,786=x-0.1x-0.02 | | -2=x/2.5+1 |